L5-5 The Pythagorean Theorem

What relationship exists among the areas of the three squares bordering each triangle?

Write an equation you could use to find the length of the missing side of the right triangle shown. Then find the missing length. Round to the nearest tenth if necessary.

$$
\begin{aligned}
& \underbrace{a^{2}+b^{2}}_{\text {legs }}=\underbrace{c^{2}}_{\text {hypotenuse }} \\
& 12^{2}+16^{2}=c^{2} \\
& 144+256=c^{2} \\
& \sqrt{400}=\sqrt{c^{2}} \\
& 20=c
\end{aligned}
$$

 necessary.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
a^{2}+28^{2} & =33^{2} \\
a^{2}+784 & =1089 \\
-784 & -784 \\
\sqrt{a^{2}} & =\sqrt{305} \\
a & \approx 17.46
\end{aligned}
$$

3. The measures of three sides of a triangle are 5 inches, 12 inches, and 13 inches. Determine whether the triangle is a right triangle.

Converse of the Pythagorean Theorem -
Use the theorem to prove that a Δ is a Δ

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
5^{2}+12^{2} & =13^{2} \\
25+144 & =169 \\
169 & =169 \\
\therefore 5-12-13 & \text { is } a
\end{aligned}
$$

The measures of three sides of a triangle are 24 inches, 7 inches, and 25 inches. Determine whether the triangle is a right triangle.

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
24^{2}+7^{2}=25^{2} \\
576+49=625 \\
625=625 \\
\therefore \quad 24-7-25 \Delta \text { is a } \Delta
\end{gathered}
$$

