L8-1 Adding and Subtracting Polynomials

Define the following:

- monomial single term (-2, -2x⁴)
- polynomial an expression involving multiple terms (x-1, 12x9+1x-8)
- binomial polynomial with two terms
- trinomial polynomial with three terms
- degree of a monomial sum of the exponents of the variables (3xyz has a degree of 3)
- degree of a polynomial the term with the greatest power (3x⁸-2x³+5 has a degree of 8)
- standard form of a polynomial order the terms in ABC and descending power order
- <u>leading coefficient</u> coefficient in front of the term with the greatest power

Identify Polynomials

State whether each expression is a polynomial. If it is a polynomial, identify it as a *monomial, binomial,* or *trinomial.*

Expression	Is it a polynomial?	Monomial, binomial, or trinomial?
a. $6x - 4$	Yes; $6x - 4$ is the difference of two monomials.	binomial
b. $x^2 + 2xy - 7$	Yes; $x^2 + 2xy - 7$ is the sum and difference of three monomials.	trinomial
c. $\frac{14d + 19e^3}{5d^4}$	No; $\frac{14d}{5d^5}$ and $\frac{19e^3}{5d^4}$ are not monomials.	none of these
d. $26b^2$	Yes; $26b^3$ has one term.	monomial

Degree	Name	
0	constant	
1	linear	
2	quadratic	
3	cubic	
4	quartic	
5	quintic	
6 or more	6th degree, 7th degree, and so on	

A. State whether $3x^2 + 2y + z$ is a polynomial. If it is a polynomial, identify it as a *monomial*, *binomial*, or *trinomial*. State its degree.

B. State whether $4a^2 - b^{-2}$ is a polynomial. If it is a polynomial, identify it as a *monomial*, *binomial*, or *trinomial*. State its degree.

not a polynomial because it involves division.

C. State whether 8r - 5s is a polynomial. If it is a polynomial, identify it as a *monomial*, *binomial*, or *trinomial*. Identify its degree.

8r-5s binomial degree of 1

D. State whether $3y^5$ is a polynomial. If it is a polynomial, identify it as a *monomial*, *binomial*, or *trinomial*. Identify its degree.

3 y 5 monomial (one term) chegree of 5

Standard Form of a Polynomial

A. Write $9x^2 + 3x^6 - 4x$ in standard form. Identify the leading coeffic

2) Decreasing power 3) Constant always comes last

B. Write $12 + 5y + 6xy + 8xy^2$ in standard form. Identify the leading co

1 Combine

Add Polynomials

A. Find $(7y^2 + 2y - 3) + (2 - 4y + 5y^2)$.

Horizontal Method

$$(7y^2+2y-3)+(2-4y+5y^2)=3 \text{ add}$$

Vertical Method

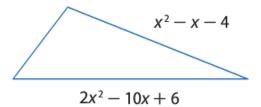
Put expression
in standard
form
add
Simplify

Subtract Polynomials

A. Find
$$(6y^2 + 8y^4 - 5y) - (9y^4 - 7y + 2y^2)$$
.

Vertical Method

Find $(6n^2 + 11n^3 + 2n) - (4n - 3 + 5n^2)$.		
Horizontal Method	Vertical Method	


VIDEO GAMES The total amount of toy sales *T* (in billions of dollars) consists of two groups: sales of video games *V* and sales of traditional toys *R*. In recent years, the sales of traditional toys and total sales could be modeled by the following equations, where *n* is the number of years since 2000.

$$R = 0.46n^3 - 1.9n^2 + 3n + 19$$

$$T = 0.45n^3 - 1.85n^2 + 4.4n + 22.6$$

- A. Write an equation that represents the sales of video games *V*.
- B. Use the equation to predict the amount of video game sales in the year 2009.

52. CSS REASONING The perimeter of the triangle can be represented by the expression $3x^2 - 7x + 2$. Write a polynomial that represents the measure of the third side.

