L8-5 Use the Distributive Property
Use the Distributive Property
Factor $15 x+25 x^{2}$. The find the roots (solutions) of the equation.

Factor and find the solutions for $12 x y+24 x y^{2}-30 x^{2} y^{4}$.

$$
\begin{gathered}
12 x y=(2) \cdot 2(3) \cdot(3)(9) \\
24 x y^{2}=(2) \cdot 2 \cdot \partial(3)(\otimes(y) y \\
-30 x^{2} y^{4}=(2)(3)-5 \text { (2) } x(\\
2 \cdot 3 \cdot x \cdot y=6 x y \\
2+4 y-5 x y^{3} \\
(6 x y)\left(2+4 y-5 x y^{3}\right)
\end{gathered}
$$

$$
\left.-30 x^{2} y^{4}=\text { (2) (3) }-5 \text { (X) } x \text { (y) } y \cdot y \cdot y\right)
$$

Use common Factors to Find GCF Put left over factors back together to make a simplified expression

Factor and find the solutions for $3 x^{2} y+12 x y^{2}$.

$$
\begin{gathered}
3 x^{2} y+12 x y^{2} \\
3 x y(x+4 y)
\end{gathered}
$$

Relatively Prime Polynomial
(1) The \#'s themselves are not necessarily prime \#'s
(2) The \#'s are prime relative to ore another
(3) The \#'s have no common factors.
(4) Can I find a common factor between these HIs?

$$
3 x^{2}-19 y^{2}-14 z+5
$$

This polynomial is relatively prime because no 2 terms have a common factor.

Factor by Grouping

KeyConcept Factoring by Grouping

Words A polynomial can be factored by grouping only if all of the following conditions exist.

- There are four or more terms.
- Terms have common factors that can be grouped together.
- There are two common factors that are identical or additive inverses of each other.

Symbols

$$
\begin{aligned}
a x+b x+a y+b y & =(a x+b x)+(a y+b y) \\
& =x(a+b)+y(a+b) \\
& =(x+y)(a+b)
\end{aligned}
$$

KeyConcept Zero Product Property

Words If the product of two factors is 0 , then at least one of the factors must be 0 .
Symbols \quad For any real numbers a and b, if $a b=0$, then $a=0, b=0$, or both a and b equal zero.

Factor and find the solutions of $2 x y+7 x-2 y-7$.
$(2 x y-2 y)+(7 x-7)$ (1) Group terms based

(2) Take common factor out of each group
$2 y+7=0$ $x-1=0$

$$
2 y=-7
$$

(3) Rearrange so

$$
x=1
$$ that you have a poly. expression times poly.

(4) Set each expression
$=0$
(5) Solve for the roots(solutions)

Factor and find the roots for $4 x y+3 y-20 x-15$.

$$
\begin{aligned}
& (4 x y-20 x)+(3 y-15) \\
& 4 x(y-5)+3(y-5) \rightarrow \text { GOlF of } \\
& (4 x+3)(y-5) \\
& 4 x+3=0 \quad y-5=0 \\
& x=\frac{-3}{4} \quad y=5
\end{aligned}
$$

Factor by Grouping with Additive Inverses
Factor and find the roots for $15 a-3 a b+4 b-20$.

$$
\begin{array}{ll}
(15 a-3 a b)+(4 b-20) & \\
3 a(5-b)+4(b-5) & \text { Close } \\
-3 a(-5+b)+4(b-5) & \text { Factored - } 3 a \\
\text { instead of } 3 a \\
-3 a(b-5)+4(b-5) & \text { commutative } 3(15 a=-5 \\
(-3 a+4)(b-5) & \text { Propr. } \\
-3 a+4=0 & b-5=0 \\
-3=\frac{9}{3} & b=5
\end{array}
$$

Factor and find the roots for $-2 x y-10 x+3 y+15$.

Factor and find the roots for $-2 x y-10 x+3 y+15$.

FOOTBALL A football is kicked into the air. The height of the football can be modeled by the equation $h=-16 x^{2}+48 x$, where h is the height reached by the ball after \boldsymbol{x} seconds. Find the values of x when $h=0$.

Juanita is jumping on a trampoline in her back yard. Juanita's jump can be modeled by the equation $h=-14 t^{2}+21 t$, where h is the height of the jump in feet at t seconds. Find the values of t when $h=0$.

