1. Name the angle shown at the right. Then classify it as acute, right, obtuse, or straight.

$$
\angle x y z<z \geq x<y
$$

2 LI

- acute

2. Identify a pair of vertical angles and adjacent angles in the diagram at the right. Justify your response.

1

2
\cong congruent
Vertical
$\angle 1 \cong \angle 3$
$\angle 2 \cong \angle 4$
3. What is the value of x in the figure?

$$
\frac{(2 x+2)^{\circ}}{(3 y-10)^{\circ} \frac{250^{\circ}}{130^{\circ}}}
$$

$$
\begin{aligned}
& m \angle 1=(2 x+2)^{2} \\
& m \angle 2=50^{\circ} \\
& m \angle 3=130^{\circ} \\
& m \angle 4=(3 y-10)^{\circ}
\end{aligned}
$$

Solve for x
$4 \ddagger \angle 3$ are vertical
$\therefore m \angle 1=m \angle 3$ Defingert $2 x+q_{2} \alpha=130$ subs.

$$
\begin{aligned}
& \frac{2 x}{2}=\frac{128}{2} \\
& x=64^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
m \angle 1 & =2 x+2 \\
& =2(64)+2 \text { subs. } \\
& =130-
\end{aligned}
$$

3. What is the value of x in the figure?

$m \angle 1=(2 x+2)^{2}$

$$
m \angle D=50^{\circ}
$$

$$
m \angle 3=130^{\circ}
$$

$$
m \angle 4=(3 y-10)^{0}
$$

Solve for y
$\angle 4$ なL2 are vert.
$\therefore m \angle L=m \angle 2$
$3 y-10=50$ subs.
$+10+10$
$\frac{3 y}{3}=\frac{60}{3}$
$y=20^{\circ}$
$3(20)-10=50$
$60-10=50$
$50=50$

What is the value of x in the figure?

nom means a right angle $\angle 60^{\circ} \& \angle 3 x^{\circ}$ are complementary

